Estimation of the density of regression errors by pointwise model selection

نویسندگان

  • Sandra Plancade
  • S. PLANCADE
چکیده

This paper presents two results: a density estimator and an estimator of regression error density. We first propose a density estimator constructed by model selection, which is adaptive for the quadratic risk at a given point. Then we apply this result to estimate the error density in an homoscedastic regression framework Yi = b(Xi) + ǫi, from which we observe a sample (Xi, Yi). Given an adaptive estimator bb of the regression function, we apply the density estimation procedure to the residuals bǫi = Yi − b(Xi). We get an estimator of the density of ǫi whose rate of convergence for the quadratic pointwise risk is the maximum of two rates: the minimax rate we would get if the errors were directly observed and the minimax rate of convergence of bb for the quadratic integrated risk. February 18, 2009 MSC 2000 Subject Classifications. 62G07-62G08

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Estimation in Linear Regression Model: the Density Power Divergence Approach

The minimum density power divergence method provides a robust estimate in the face of a situation where the dataset includes a number of outlier data. In this study, we introduce and use a robust minimum density power divergence estimator to estimate the parameters of the linear regression model and then with some numerical examples of linear regression model, we show the robustness of this est...

متن کامل

Wavelet Threshold Estimator of Semiparametric Regression Function with Correlated Errors

Wavelet analysis is one of the useful techniques in mathematics which is used much in statistics science recently. In this paper, in addition to introduce the wavelet transformation, the wavelet threshold estimation of semiparametric regression model with correlated errors with having Gaussian distribution is determined and the convergence ratio of estimator computed. To evaluate the wavelet th...

متن کامل

Penalized Bregman Divergence Estimation via Coordinate Descent

Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...

متن کامل

حل معادلات برآوردکننده مدل‌های رگرسیون با اندازه خطای تصادفی روی متغیر مستقل به روش بهینه سازی

Measurements of some variables in statistical analysis are often encountered with random errors. Therefore, investigating of the effects of these errors seems to be important. This event in regression analysis seems to be more necessary. Because the aim of the fitting a regression model is estimating the effect of an independent variable on a response variable. Then measurements of an independe...

متن کامل

Development of a Pharmacogenomics Model based on Support Vector Regression with Optimal Features Selection Approach to Determine the Initial Therapeutic Dose of Warfarin Anticoagulant Drug

Introduction: Using artificial intelligence tools in pharmacogenomics is one of the latest bioinformatics research fields. One of the most important drugs that determining its initial therapeutic dose is difficult is the anticoagulant warfarin. Warfarin is an oral anticoagulant that, due to its narrow therapeutic window and complex interrelationships of individual factors, the selection of its ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017